Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202400119, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38268159

RESUMO

The water (H2 O) dissociation is critical for various H2 O-associated reactions, including water gas shift, hydrogen evolution reaction and hydrolysis corrosion. While the d-band center concept offers a catalyst design guideline for H2 O activation, it cannot be applied to intermetallic or main group elements-based systems because Coulomb interaction was not considered. Herein, using hydrolysis corrosion of Mg as an example, we illustrate the critical role of the dipole of the intermetallic catalysts for H2 O dissociation. The H2 O dissociation kinetics can be enhanced using Mgx Mey (Me=Co, Ni, Cu, Si and Al) as catalysts, and the hydrogen generation rate of Mg2 Ni-loaded Mg reached 80 times as high as Ni-loaded Mg. The adsorbed H2 O molecules strongly couple with the Mg-Me dipole of Mgx Mey , lowering the H2 O dissociation barrier. The dipole-based H2 O dissociation mechanism is applicable to non-transition metal-based systems, such as Mg2 Si and Mg17 Al12 , offering a flexible catalyst design strategy for controllable H2 O dissociation.

2.
Adv Mater ; 36(11): e2308086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37830986

RESUMO

Zn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H2 O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H2 O adsorption energy on the Zn metal anode. In situ integrated Cu nanorods arrays and hydrophobic long-chain alkyl groups are constructed, which provide zincophilic ordered channels and hydrophobic property. Consequently, the SA-Cu@Zn anode exhibits long-term cycling stability over 2000 h and high average Coulombic efficiency (CE) of 99.83% at 1 mA cm-2 for 1 mAh cm-2 , which improves the electrochemical performance of the Zn||V2 O5 full cell. Density functional theory (DFT) calculations combined with water contact angle (CA) measurements demonstrate that the SA-Cu@Zn exhibits larger water CA and weaker H2 O adsorption than Zn. Moreover, the presence of Cu ensures the selective adsorption of Zn on the SA-Cu@Zn anode, well explaining how the excellent reversibility is achieved. This work demonstrates the effectiveness of the lotus effect on controllable H2 O adsorption and Zn deposition mechanism, offering a universal strategy for achieving stable ZIB anodes.

4.
Adv Mater ; 35(47): e2211026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37796177

RESUMO

Conventional indirect X-ray detectors employ scintillating phosphors to convert X-ray photons into photodiode-detectable visible photons, leading to low conversion efficiencies, low spatial resolutions, and optical crosstalk. Consequently, X-ray detectors that directly convert photons into electric signals have long been desired for high-performance medical imaging and industrial inspection. Although emerging hybrid inorganic-organic halide perovskites, such as CH3 NH3 PbI3 and CH3 NH3 PbBr3 , exhibit high sensitivity, they have salient drawbacks including structural instability, ion motion, and the use of toxic Pb. Here, this work reports an ultrastable, low-dose X-ray detector comprising KTaO3 perovskite films epitaxially grown on a Nb-doped strontium titanate substrate using a low-cost solution method. The detector exhibits a stable photocurrent under high-dose irradiation, high-temperature (200 °C), and aqueous conditions. Moreover, the prototype KTaO3 -film-based detector exhibits a 150-fold higher sensitivity (3150 µC Gyair -1 cm-2 ) and 150-fold lower detection limit (<40 nGyair s-1 ) than those of commercial α-Se-based direct detectors. Systematic investigations reveal that the high stability of the detector originates from the strong covalent bonds within the KTaO3 film, whereas the low detection limit is due to a lattice-gradient-driven built-in electric field and the high insulating property of KTaO3 film. This study unveils a new path toward the fabrication of green, stable, and low-dose X-ray detectors using oxide perovskite films, which have significant application potential in medical imaging and security operations.

5.
Nat Commun ; 14(1): 6373, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821432

RESUMO

The tunability of reaction pathways is required for exploring efficient and low cost catalysts for ammonia synthesis. There is an obstacle by the limitations arising from scaling relation for this purpose. Here, we demonstrate that the alkali earth imides (AeNH) combined with transition metal (TM = Fe, Co and Ni) catalysts can overcome this difficulty by utilizing functionalities arising from concerted role of active defects on the support surface and loaded transition metals. These catalysts enable ammonia production through multiple reaction pathways. The reaction rate of Co/SrNH is as high as 1686.7 mmol·gCo-1·h-1 and the TOFs reaches above 500 h-1 at 400 °C and 0.9 MPa, outperforming other reported Co-based catalysts as well as the benchmark Cs-Ru/MgO catalyst and industrial wüstite-based Fe catalyst under the same reaction conditions. Experimental and theoretical results show that the synergistic effect of nitrogen affinity of 3d TMs and in-situ formed NH2- vacancy of alkali earth imides regulate the reaction pathways of the ammonia production, resulting in distinct catalytic performance different from 3d TMs. It was thus demonstrated that the appropriate combination of metal and support is essential for controlling the reaction pathway and realizing highly active and low cost catalysts for ammonia synthesis.

6.
Sci Adv ; 9(38): eadh9104, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738353

RESUMO

Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.

7.
Nat Commun ; 14(1): 5568, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689758

RESUMO

Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C2 symmetry as a gate medium which can break the original threefold-rotational C3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.

8.
ACS Nano ; 17(14): 13659-13671, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37418375

RESUMO

Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.

9.
Cogn Sci ; 47(5): e13294, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37183511

RESUMO

People are known for good predictions in domains they have rich experience with, such as everyday statistics and intuitive physics. But how well can they predict for problems they lack experience with, such as the duration of an ongoing epidemic caused by a new virus? Amid the first wave of COVID-19 in China, we conducted an online diary study, asking each of over 400 participants to predict the remaining duration of the epidemic, once per day for 14 days. Participants' predictions reflected a reasonable use of publicly available information but were meanwhile biased, subject to the influence of negative affect and future time perspectives. Computational modeling revealed that participants neither relied on prior distributions of epidemic durations as in inferring everyday statistics, nor on mechanistic simulations of epidemic dynamics as in computing intuitive physics. Instead, with minimal experience, participants' predictions were best explained by similarity-based generalization of the temporal pattern of epidemic statistics. In two control experiments, we further confirmed that such cognitive algorithm is not specific to the epidemic scenario and that minimal and rich experience do lead to different prediction behaviors for the same observations. We conclude that people generalize patterns in recent history to predict the future under minimal experience.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Generalização Psicológica , Simulação por Computador , China/epidemiologia
10.
J Am Chem Soc ; 145(19): 10669-10680, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129031

RESUMO

Electrides are promising support materials to promote transition metal catalysts for ammonia synthesis due to their strong electron-donating ability. Cobalt (Co) is an alternative non-noble metal catalyst to ruthenium in ammonia synthesis; however, it is difficult to achieve acceptable activity at low temperatures due to the weak Co-N interaction. Here, we report a novel oxyhydride electride, BaAl2O4-xHy, that can significantly promote ammonia synthesis over Co (500 mmol gCo-1 h-1 at 340 °C and 0.90 MPa) with a very low activation energy (49.6 kJ mol-1; 260-360 °C), which outperforms the state-of-the-art Co-based catalysts, being comparable to the latest Ru catalyst at 300 °C. BaAl2O4-xHy with a stuffed tridymite structure has interstitial cage sites where anionic electrons are accommodated. The surface of BaAl2O4-xHy with very low work functions (1.7-2.6 eV) can donate electrons strongly to Co, which largely facilitates N2 reduction into ammonia with the aid of the lattice H- ions. The stuffed tridymite structure of BaAl2O4-xHy with a three-dimensional AlO4-based tetrahedral framework has great chemical stability and protects the accommodated electrons and H- ions from oxidation, leading to robustness toward the ambient atmosphere and good reusability, which is a significant advantage over the reported hydride-based catalysts.

11.
Proc Natl Acad Sci U S A ; 120(17): e2221688120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071679

RESUMO

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta2NiSe5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta2NiSe5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.

12.
Bone Res ; 11(1): 13, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869045

RESUMO

In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.

13.
Small ; 19(24): e2208277, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916706

RESUMO

The metallic sodium (Na) is characterized by high theoretical specific capacity, low electrode potential and abundant resources, and its advantages manifests itself as a promising candidate anode of sodium metal batteries (SMBs). However, the vaporization during the plating/stripping or uncontrolled growth of sodium dendrites in sodium metal anodes (SMAs) has posed major challenges to its practical applications. To address this issue, here, the SnO2 /Ti3 C2 Tx composite is rationally fabricated, in which sodiophilic SnO2 nanoparticles are in situ dispersed on the 2D Ti3 C2 Tx , providing the acceptor sites of Na+  that can control vaporization and dendrites. The SnO2 /Ti3 C2 Tx composite anode exhibits smooth and homogeneous morphology after Na-metal deposition cycles, stable Coulombic efficiency (CE) of half cells, long stable cycles of symmetric cells due to highly sodiophilic sites, and confinement effect. In addition, the full cells assembled with Na0.6 MnO2 also show excellent rate performance and cycling performance. These discoveries demonstrate the effectiveness of the acceptor sites and the confinement effect provided by the SnO2 /Ti3 C2 Tx composite, and thus provide an additional degree of freedom for designing SMBs.

14.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144829

RESUMO

A novel, label-free fluorescent assay has been developed for the detection of trypsin by using thioflavin T as a fluorescent probe. A specific DNA aptamer can be combined by adding cytochrome c. Trypsin hydrolyzes the cytochrome c into small peptide fragments, exposing the G-quadruplex part of DNA aptamer, which has a high affinity for thioflavin T, which then enhances the fluorescence intensity. In the absence of trypsin, the fluorescence intensity was inhibited as the combination of cytochrome c and the DNA aptamer impeded thioflavin T's binding. Thus, the fluorescent biosensor showed a linear relationship from 0.2 to 60 µg/mL with a detection limit of 0.2 µg/mL. Furthermore, the proposed method was also successfully employed for determining trypsin in biological samples. This method is simple, rapid, cheap, and selective and possesses great potential for the detection of trypsin in bioanalytical and biological samples and medical diagnoses.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Benzotiazóis , Técnicas Biossensoriais/métodos , Citocromos c , Fluorescência , Corantes Fluorescentes , Limite de Detecção , Fragmentos de Peptídeos , Espectrometria de Fluorescência , Tripsina
15.
Angew Chem Int Ed Engl ; 61(47): e202211759, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36161686

RESUMO

Metal nitride complexes have recently been proposed as an efficient noble-metal-free catalyst for ammonia synthesis utilizing a dual active site concept. However, their high sensitivity to air and moisture has restricted potential applications. We report that their chemical sensitivity can be improved by introducing Al into the LaN lattice, thereby forming La-Al metallic bonds (La-Al-N). The catalytic activity and mechanism of the resulting TM/La-Al-N (TM=Ni, Co) are comparable to the previously reported TM/LaN catalyst. Notably, the catalytic activity did not degrade after exposure to air and moisture. Kinetic analysis and isotopic experiment showed that La-Al-N is responsible for N2 absorption and activation despite substantial Al being introduced into its lattice because the local coordination of the lattice N remained largely unchanged. These findings show the effectiveness of metallic bond formation, which can support the chemical stability of rare-earth nitrides with retention of catalytic functionality.

16.
Small ; 18(38): e2201712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026533

RESUMO

Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .

17.
Artigo em Inglês | MEDLINE | ID: mdl-35833824

RESUMO

While magnesium hydride (MgH2) has drawn considerable attention as a promising hydrogen storage material, it suffers from sluggish kinetics and high desorption temperature, hindering potential applications. Herein, we show that the hydrogen desorption kinetics of MgH2 can be significantly improved using bimetallic oxide MnV2O6 as the catalyst. A MgH2-MnV2O6 composite was prepared by a high-energy ball milling method. The results showed that the MgH2-MnV2O6 composite can release 5.57 wt % hydrogen within 10 min under 250 °C. The dehydrogenated MgH2-MnV2O6 sample can absorb 3.09 wt % hydrogen within 10 min under 50 °C. Notably, the reversible hydrogen storage property did not degrade at least within 100 cycles, showing excellent cycle stability. X-ray diffraction and transmittance electron microscopy measurements revealed that MnV alloy and V2O3 phases were formed during the ball milling process, leading to the synergistic catalytic effect. We argue that the bimetallic MnV alloy plays key catalytic roles in this system because MnV alloy can promote the fracture of the H-H and Mg-H bonds, significantly improving the hydrogen storage kinetics and low-temperature reversible hydrogen storage performance of MgH2.

19.
Nat Mater ; 21(7): 773-778, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35710630

RESUMO

Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP2), where the bound electron-hole pair is composed of electrons confined within one-dimensional phosphorus-phosphorus chains and holes extended in two-dimensional SiP2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP2 as a platform for the study of excitonic physics and many-particle effects.

20.
ACS Appl Mater Interfaces ; 14(9): 11927-11936, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191687

RESUMO

Two-dimensional (2D) van der Waals materials with broadband optical absorption are promising candidates for next-generation UV-vis-NIR photodetectors. FePS3, one of the emerging antiferromagnetic van der Waals materials with a wide bandgap and p-type conductivity, has been reported as an excellent candidate for UV optoelectronics. However, a high sensitivity photodetector with a self-driven mode based on FePS3 has not yet been realized. Here, we report a high-performance and self-powered photodetector based on a multilayer MoSe2/FePS3 type-II n-p heterojunction with a working range from 350 to 900 nm. The presented photodetector operates at zero bias and at room temperature under ambient conditions. It exhibits a maximum responsivity (Rmax) of 52 mA W-1 and an external quantum efficiency (EQEmax) of 12% at 522 nm, which are better than the characteristics of its individual constituents and many other photodetectors made of 2D heterostructures. The high performance of MoSe2/FePS3 is attributed to the built-in electric field in the MoSe2/FePS3 n-p junction. Our approach provides a promising platform for broadband self-driven photodetector applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...